科学家发现中等质量黑洞证据:迄今最强的引力波源

  利用引力波探测器,天文学家发现了一个142倍太阳质量黑洞,这是迄今为止观测到的最大规模的黑洞合并事件。天体物理学家对这一引力波事件非常关注,因为这对目前的黑洞形成理论提出了挑战。

  宇宙中充满了时空涟漪——引力波——的回响,现在,在我们所听到的“宇宙交响乐”中,又增加了一段新的声音。自2015年以来,天体物理学家一直在使用引力波探测器来“聆听”宇宙中类似啁啾的信号,并通过这些在时空中产生的细微涟漪,分析发出这些信号的大规模碰撞事件。现在,根据激光干涉引力波天文台(LIGO)和欧洲的室女座干涉仪(Virgo)的一项新研究,科学家们探测到了一个新的引力波信号,来自一场快速而剧烈的“爆炸”事件。对该事件的研究或许能帮助我们解开更多的宇宙谜题。

  “这是又一个首次发现,”斯安那州立大学的物理学家、这项新研究的团队成员加布里埃拉·冈萨雷斯(Gariela Gonzalez)说,“我们永远不会厌倦第一。”经过一年多的研究,这个被称为GW190521的奇怪信号使科学家相信,他们发现了迄今为止最大规模的黑洞合并事件,其形成的142倍太阳质量黑洞也是第一个被清晰探测到的中等质量黑洞(即质量为太阳质量100倍至1000倍的黑洞)。

  宇宙中的巨大爆炸

  当科学家们仔细梳理引力波探测仪的观测结果时,很快就发现了这个特的信号。这项新研究的合著者、哥伦亚大学的天文学家筎然娜·玛卡(Zsuzsanna Marka)清楚地记得,探测器是在2019年5月21接收到信号。她是少数几个将手机与宇宙探测实时连接的天体物理学家之一,每当引力波探测器“听”到宇宙中可能的信号时,他们就会收到提醒。

  收到提醒之后,玛卡开始检查这些事件中是否伴有中微子爆发。不过,就在当晚,她已经意识到这很可能是一次十分特别的探测。“我不由自主地注意到了巨大的质量,”玛卡说道。她记得当时的想法是:“这太棒了,意义非常重大。这确实是我们希望看到的大规模事件之一,令人难以置信,但还不清楚是否的存在这样的大质量黑洞。”

  黑洞的大小各不相同。根据国家航空航天局(NASA)的数据,恒星黑洞(一类由大质量恒星引力坍塌后形成的黑洞)的质量是太阳的10到25倍;超大质量黑洞的质量是太阳的数十万倍到数百万倍以上,一般认为星系中心(包括银河系中心)都会有超大质量黑洞。天文学家推测,可能存在某种介于两者之间的黑洞,即中等质量黑洞。据估计,中等质量黑洞的质量大约为太阳的100倍到1000倍。

  中等质量黑洞并不像大多数小型黑洞那样,由垂死的恒星爆发形成。相由单一恒星引力坍缩形成的恒星黑洞而言,中等质量黑洞的质量显然过大;恒星在爆发过程中总是会失去一些物质,但当恒星达到一定体积后,无论它变大多少,当它爆发时会形成一个质量最高约为太阳65倍的黑洞。根据LIGO团队的研究,更大的恒星在爆发时会失去更多的物质,最终形成同样大小的黑洞。

  这一过程可以解释130倍太阳质量的恒星如何形成最高为65倍太阳质量的黑洞,而对于质量更大的恒星(130至倍太阳质量),则更可能发生不稳定对超新星爆发,恒星将被完全毁灭,不留下黑洞或任何残骸。因此,天文学家认为,恒星坍缩不会产生质量在太阳质量65倍至120倍之间的黑洞,这一范围称为“对不稳定性空缺”。

  直到最近,中等质量黑洞还只是理论上存在的神秘天体,即使以黑洞的标准来看也十分难以捉摸。利用LIGO的早期探测结果,天文学家对恒星黑洞进行了观察;另一方面,事件视界望远镜也拍摄到了M87星系中心超大质量黑洞的图像,但对于中等质量黑洞,对其进行探测并不容易。

  这次新的爆炸事件成为首次探测到中等质量黑洞的证据。天文学家的计算表明,这个引力波信号是一个85倍太阳质量的中等质量黑洞与一个66倍太阳质量的恒星黑洞碰撞时产生的。国家科学基金会引力物理学项目主任佩德罗·马罗内蒂(Pedro Marronetti)在一份声明中说:“LIGO再次让我们感到惊喜,它不仅探测到了大小难以解释的黑洞,而且使用的技术并不是专门为恒星合并事件设计的。”LIGO项目是由国家科学基金会资助的。

  “这非常重要,因为它展示了LIGO探测器的能力,其探测到的信号来自完全不可预见的天体物理事件,”马罗内蒂说,“这项探测表明,LIGO也可以观测到我们意想不到的物体。”

  是新的黑洞,还是更奇特的物体?

  与往常一样,当涉及到引力波时,天文学家就不得不围绕着探测结果中破译的少量信息来建立假设。他们将这一引力波信号命名为GW190521,发现它的持续时间LIGO之前探测到的信号短得多,只有十分之一秒;它的频率也之前的黑洞合并事件产生的信号低得多。天文学家还可以追踪该信号至特定的天空区域。

  根据这些信息,天体物理学家计算出了碰撞发生的距离——大约70亿光年。他们还可以计算出了两个相撞物体的质量,分别是太阳质量的85倍和66倍,而碰撞后的物体质量大约是太阳质量的142倍(在碰撞过程中,一些质量以引力波能量的形式丢失了)。

  由于濒死恒星产生的黑洞大小存在,因此这些初始质量表明,至少其中较大的黑洞——也可能是较小的黑洞——本身可能就是两个黑洞碰撞的结果。“两个黑洞合并,形成一个新的黑洞……然后它们再次合并,”玛卡说,“这只有在存在大量黑洞,即黑洞密度很高的环境下才会发生。”

  玛卡希望这场碰撞发生在一个活动星系核附近,由于活动星系核的强大引力,可以将天体锚定在附近。活动星系核是星系中心的一个致密区域,其发出的辐射被认为是星系中央的超大质量黑洞物质吸积产生的。不过,利用目前有关的数据,天文学家还没有办法确定GW190521背后的确切机制。

  从更长远的角度,如果能发现更多正在合并的中等质量黑洞,或许可以解决关于超大质量黑洞的一个重大谜团,即它们的起源。

  “它们就像房间里的大象,有上百万个太阳的质量,”西北大学天体物理学家、LIGO研究人员克里斯托弗·贝里(Christopher Berry)在另一份声明中说,“它们是由恒星质量黑洞(恒星塌缩时产生)演变而来,还是通过某种未被发现的方式产生的?长期以来,我们一直在寻找一个中等质量黑洞,以填补恒星黑洞和超大质量黑洞之间的空缺。现在,我们有证据证明中等质量黑洞确实存在。”

  尽管天文学家对这个引力波信号和发现中等质量黑洞的可能到兴奋,但他们并不能肯定目前的假设是正确的。当然,两个85倍和66倍太阳质量的黑洞合并是最符合数据的,但天体物理学家也在考虑更奇特的解释。

  “如果某种全新的事件产生了这些引力波呢?”西北大学的物理学家、LIGO团队专家瓦西莉基·卡洛耶拉(Vicky Kalogera)说,“这样的前景很吸引人。”她还补充道,目前对信号产生原因的假设包括一颗银河系恒星的坍缩,以及某种古老的宇宙弦。

  首次发现之后

  目前,LIGO和Virgo探测器都处于下线状态。由于疫情大流行,它们在3月底关闭。不过,天体物理学家正计划升级这两台探测器和它们的算法,以继续探测宇宙中的时空涟漪。

  探测器及其算法的升级对于追踪更多像GW190521这样的信号是至关重要的。如果探测器本身更加灵敏,科学家就能捕捉到更遥远的信号;而对数据处理算法进行微调,他们就能更容易地识别像这样的更短信号。

  冈萨雷斯表示,探测到两个黑洞的碰撞事件,以及其中某个黑洞本身就是由合并形成的,这预示着宇宙中存在着很多有待观测的信号。“我希望这意味着有更多的黑洞——可能是黑洞的集群,因为它们聚集在一起,所以合并得更频繁,”她说,“我希望这些黑洞集群的规模很大,而且分布在很多地方,这样我们就能探测到更多的黑洞。”

  当然,这一切还必须取决于未来的探测结果。“大自然做它该做的,我们不能告诉它该做什么,”冈萨雷斯说,“我们收集数据,取得发现,然后由理论天体物理学家们去推测并提出新的理论,来解释这些巨大的黑洞是如何产生的。”

  LIGO和Virgo团队将相关研究的结果发表在9月2的《物理评论快报》(Physical Review Letters)和《天体物理学期刊通讯》(The Astrophysical Journal Letters)上,前一篇详细描述了引力波信号的发现过程,后一篇则讨论了该信号的物理性质及天文物理学意义。(任天)

本文由程序自动从互联网上获取,其版权均归原作者所有,文章内容系原作者个人观点,不代表本站对观点赞同或支持。如有侵权,请联系删除。